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Innovations in the Assessment of Skeletal Muscle Health: A
Glimpse into the Future

Running Title: Innovations in Skeletal Muscle Assessment
Word Count: 5,286
Figures: 7

Abstract
Skeletal muscle is the largest organ system in the human body and plays critical roles in athletic 
performance, mobility, and disease pathogenesis. Despite growing recognition of its importance 
by major health organizations, significant knowledge gaps remain regarding skeletal muscle 
health and its crosstalk with nearly every physiological system. Relevant public health 
challenges like pain, injury, obesity, and sarcopenia underscore the need to accurately assess 
skeletal muscle health and function. Feasible, non-invasive techniques that reliably evaluate 
metrics including muscle pain, dynamic structure, contractility, circulatory function, body 
composition, and emerging biomarkers are imperative to unraveling the complexities of skeletal 
muscle. Our concise review highlights innovative or overlooked approaches for comprehensively
assessing skeletal muscle in vivo. We summarize recent advances in leveraging dynamic 
ultrasound imaging, muscle echogenicity, tensiomyography, blood flow restriction protocols, 
molecular techniques, body composition, and pain assessments to gain novel insight into muscle 
physiology from cellular to whole-body perspectives. Continued development of precise, non-
invasive tools to investigate skeletal muscle are critical in informing impactful discoveries in 
exercise and rehabilitation science.

Keywords: pain; injury; rehabilitation; athlete performance; blood flow restriction; muscle 
quality
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Introduction

Skeletal muscle is one of the most metabolically active and adaptable tissues in the human body, 
comprising up to 40% of total body mass and containing 50-75% of all body proteins [1]. The 
dynamic and plastic nature of skeletal muscle enables it to support a wide range of vital functions
for human health and performance, including initiating movement, maintaining posture and body
temperature, stabilizing joints, and storing nutrients [2]. Over recent decades, researchers have 
developed and refined a range of techniques to evaluate skeletal muscle structure and function, 
non-invasively. These include imaging modalities such as magnetic resonance imaging (MRI) 
and CT, dual energy X-ray absorptiometry, anthropometric measurements such as skinfolds and 
girths, electromyography (EMG), and isokinetic dynamometry. Application of these techniques 
has provided key insights into the adaptability of human skeletal muscle within the context of 
aging, disease, injury, exercise, and nutrition [1,3,4]. While current methods have advanced our 
understanding of skeletal muscle physiology, continued innovation and optimization are 
necessary to develop more feasible assessment tools capable of exploring intricate muscle 
morphology responses to different physiological and pathophysiological stimuli [5]. Emerging 
areas requiring further research include the influence of individual variation in muscle structure 
and function, sensitivity of assessment techniques, the interplay between muscle and other 
tissues like fat and bone, and the ideal modes and dosages of exercise, nutrition, and 
rehabilitation interventions [6,7]. 

To further promote engagement in these research avenues, scientists must continue honing 
current approaches while implementing more viable, novel assessment tools aimed to adequately
assess skeletal muscle properties. The purpose of our review is to briefly highlight emerging, 
innovative, and relatively feasible approaches that show promise in assessing skeletal muscle 
health. Covered topics in this review include ultrasound-derived dynamic imaging, 
tensiomyograpy, innovative approaches for blood flow restriction administration, utilization of 
neoepitope-biomarkers for skeletal muscle structure and function, ultrasound-derived echo 
intensity measures for muscle quality, and other novel assessments of body composition and 
skeletal muscle pain. 

Methods

A comprehensive review of the science literature was conducted to assess the latest approaches 
in evaluating skeletal muscle health. The National Institutes for Health National Library of 
Medicine (PubMed.gov) and Google Scholar search engines were utilized, specifically, to 
identify recent publications related to dynamic imaging of skeletal muscle, peripheral 
neuromuscular assessments, muscle echogenicity, blood flow restriction, biomarkers of skeletal 
muscle function, skeletal muscle quality, body composition, and pain assessment.

Dynamic Imaging

Muscle function and characteristics can be measured in several ways and many laboratory- and 
hospital-based studies utilize EMG, and imaging instrumentation, such as magnetic resonance 
imaging. Financial and time constraints can limit access and the ability to employ many of these 
techniques when clinicians and practitioners are seeking a deeper understanding of muscle 
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function. A viable alternative to some of the more expensive and less accessible options is 
ultrasound imaging (Fig 1) [8]. Specifically for musculoskeletal ultrasound imaging, there are 
established methods detailing how to measure muscle thickness, cross-sectional area, 
echogenicity, etc. [9]. Most of these methods rely on the patient or participant to be in a static, 
rested state, which controls the environment with hopes to avoid any artifact or false 
representation of the muscle’s morphology. However, many of the patient populations included 
in ultrasound imaging studies and clinical scenarios are likely to experience some sort of injury 
and/or exhibit symptomology that revolves around pain during movement. 

Ultrasound imaging when used in a dynamic, innovative manner, capturing images during 
contraction and even exercise, provides an understanding of muscle function, not just static 
characteristics [8]. When a patient or participant is experiencing pain and dysfunction during 
movement, activities of daily living, or exercise, the consequences are well documented, 
especially in those with chronic low back pain. Due to the known contribution of abdominal, hip,
and pelvic muscles to low back pain-related dysfunction, ultrasound imaging is a useful tool to 
view the complex layering of those muscles [8]. Part of the injury assessment process could 
include viewing muscles when individuals move, and they experience pain or avoid movement 
due to the fear of pain. Capturing muscle thickness, cross-sectional area, and quality can be done 
reliably in many positions [9,10], commonly in the lateral abdominal wall and posterolateral hip. 
The application of dynamic ultrasound imaging has been described recently for sport-specific 
and body part-focused rehabilitation exercises[11,12] . Visualizing musculature of the lateral 
abdominal wall is possible by fixing the ultrasound probe to the anterolateral abdomen with a 
belt ensuring the probe stays in the same position even while the individual moves. Documented 
methods describing this technique include capturing images and videos while walking, 
balancing, squatting, planking, swinging a golf club, etc.[11–14].]. Populations included in these 
studies span from healthy, asymptomatic individuals to those experiencing low back pain and 
chronic ankle instability. 

The utility of dynamic ultrasound imaging is shown by recent studies that have reported muscle 
thickness changes from a static, rested position to an active, contracted position. Activation ratios
may also be calculated by dividing the contracted thickness by the rested thickness and were first
established in hook-lying tabletop positions. Functional activation ratios divide thickness during 
exercise (e.g., peak knee flexion during a single leg squat) by a static, starting position (e.g., 
standing). A preferential activation ratio [15]  involves comparing the thickness of one muscle to 
others within the same image. For example, when imaging the lateral abdominal wall, the change
in thickness of the transverse abdominis could be divided by the change in thickness of the entire
lateral abdominal wall (Figure 2). This preferential ratio provides insight into how much the 
transverse abdominis changes its thickness relative to the other muscles during contraction. A 
greater preferential activation ratio indicates the transverse abdominis is the predominant muscle 
changing thickness out of the entire lateral abdominal wall. Dynamic ultrasound imaging also 
allows for an innovative, clinical approach to visual biofeedback. As the patient visualizes their 
muscles during a prescribed exercise, activity of daily living, or pain-provoking position, there is
an opportunity to show the patient how they can contract the muscle either at a different time or 
how to increase thickness in general. Methods have been established for sport-specific 
ultrasound biofeedback, specifically viewing the obliques during a golf swing [12]. Brightness, 
B-mode, and Motion, M-mode can be used for dynamic imaging and biofeedback. Based on the 
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goal of dynamic imaging, B-mode may apply when viewing a reference, static image, or to view 
a frame-by-frame breakdown of a muscle moving through a task. M-mode may be appropriate 
when synchronizing dynamic ultrasound with other muscle measurement tools capturing in the 
time domain, such as timing of activation with electromyography [11].

Contractile Properties 

Tensiomyography (TMG) is a non-invasive and objective assessment tool used to evaluate 
skeletal muscle contractile properties and peripheral neuromuscular function. It provides 
valuable information about muscle contraction characteristics, muscle fiber composition, and 
muscle fatigue. TMG has gained popularity in sports science, rehabilitation, and research settings
due to its ability to provide real-time and reliable data on muscle function [16–18]. TMG 
involves the application of an external electrical stimulus to the muscle belly, causing a muscle 
twitch response that is measured through a displacement sensor tip (Fig 2). It primarily assesses 
muscle contractile properties, including muscle displacement, contraction time, and muscle 
relaxation time. These parameters reflect muscle stiffness, contractile speed, and muscle fiber 
recruitment patterns [19,20]. One of the key advantages of TMG is its ability to provide 
objective and quantitative data. Traditional assessment methods, such as manual muscle testing 
or electromyography, often rely on more subjective, post-acquisition interpretation or qualitative 
measures. TMG, on the other hand, offers standardized numerical values and objective 
measurements, reducing the potential for human error and enhancing the reliability of the 
assessment [20,21]. By tracking changes in muscle contractile properties, one can evaluate the 
effectiveness of training programs and make adjustments accordingly. TMG can also help 
identify muscle imbalances and guide targeted interventions to restore balance and optimize 
performance.

TMG involves elicited, involuntary isometric contractions that are generated using a single 1 ms-
wide biphasic wave. By utilizing proprietary computer software, a twitch curve is generated 
based on data from the sensor, which allows for the determination of six primary parameters. 
The y-axis of this curve represents muscle displacement in millimeters, while the x-axis 
represents time in milliseconds. The key TMG parameters comprise displacement (Dm), 
contraction time (Tc), delay time (Td), contraction velocity (Vc) (Vc=[90%Dm-10%Dm/Tc]), 
sustain time (Ts), and half-relaxation time (Tr). (6) Displacement (Dm) pertains to the highest 
radial displacement achieved by the muscle and is linked to muscle stiffness. Contraction time 
(Tc) represents the duration between 10% and 90% of Dm on the positive slope of the twitch 
curve. Delay time (Td) is a temporal parameter that measures the duration from the initiation of 
the electrical stimulus to when the muscle belly reaches 10% of Dm or peak displacement. Half-
relaxation time (Tr) refers to the time taken for the muscle displacement to decrease from 90% of
its maximum to 50% of Dm on the negative slope of the curve. Sustain time (Ts) is defined as 
the time between 50% Dm on both the negative and positive slopes of the curve. Contraction 
velocity (Vc) is a calculated metric that aims to quantify the rate of muscular contraction. Since 
Vc is a derived measure, various methods have been employed by authors to compute it. The 
most commonly used calculation involves dividing the change in Dm between 10% and 90% by 
Tc. This approach enhances the usefulness of the Tc parameter and provides a more reliable 
measure of contraction speed by mitigating the influence of Dm. This is important as peak radial 
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displacement values have been shown to impact contraction time values due to the inherent 
shape of the twitch curve [20,21]. 

TMG can also help identify specific muscle deficits or imbalances that may contribute to 
functional limitations or recurring injuries. With this information, tailored rehabilitation 
programs can be developed to address these deficits and promote optimal recovery [18,21]. 
Moreover, TMG can be a valuable research tool for investigating muscle adaptations to training, 
comparing different training protocols, or studying the effects of injury or disease on muscle 
function. Researchers can use TMG to examine changes in muscle contractile properties 
following specific interventions or to explore how different training modalities affect muscle 
performance. 

While TMG has shown great promise as an assessment tool, it is important to note its limitations.
TMG primarily focuses on muscle contractile properties and does not provide direct information 
about neural activation or muscle force production. It is also important to consider that TMG 
measurements may be influenced by factors such as skin impedance, adipose tissue thickness, 
and anatomical variations. These factors need to be considered during data interpretation to 
ensure accurate and meaningful results.

Innovation Applications to Determine Blood Flow Restriction Occlusion Pressures 

Traditional exercise-based approaches are not well tolerated by several clinical populations, an
issue researchers/practitioners continually attempt to circumvent [22–24] . An exciting strategy to
address  this  issue  includes  combining  exercise  with  limb  occlusion  (blood  flow  restriction
[BFR]) due to its ability to induce similar or even superior benefits compared to traditional non-
occluded  exercise  [25–27].  During  BFR  exercise,  low  exercise  loads  (e.g.,  lighter
weights/resistance) are used while completing a standardized 5-min exercise scheme. Blood flow
restriction exercise uses a small inflatable cuff applied to the upper most portion of a limb to
restrict  venous blood from exiting  the exercising  limb which facilitates  robust  physiological
responses that may underly the subsequent increases in muscle strength, mass, and endurance
(i.e., fatigue resistance) observed following chronic BFR exercise. These adaptations have been
demonstrated in asymptomatic [22–31] and some symptomatic populations [32–34]. Importantly,
BFR resistance exercise has also been shown to be safe and to elicit positive effects in post-
surgical  [35,36] older adults  [32,37,38]  and hospitalized patients  [39]. Specifically, the safety
and effectiveness of BFR exercise has been routinely demonstrated with the implementation of
the  standard  75  repetition  (1  ×  30,  3  ×  15)  scheme  [28,40].  Additionally,  the  exercise  is
performed at 30% of 1RM (i.e., a low weight/resistance) and with the small, inflated cuff set to a
pressure corresponding to 40-80% of arterial occlusion pressure (i.e., approximately 40-80% of
systolic blood pressure) [41,42]. 

Despite its high versatility and implementation in both research, clinical, and athletic settings, the
application  of  BFR is  limited.  Specifically,  the  gold  standard  for  the  determination  of  total
arterial  occlusion pressure (TAOP) and application  of  BFR requires  the use of  pulsed wave
Doppler  (Fig  3).  Typically,  this  necessitates  trained  personnel  to  operate  and  interpret
ultrasound-based readings (i.e., arterial and venous blood flow) with the concomitant modulation
of pneumatic pressures. Theoretically, minute variations in the determination of TAOP changes
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the  BFR pressure  applied  which  has  been demonstrated  to  alter  the  physiological  responses
[41,43] and  discomfort  (e.g.,  higher  pressures  result  in  greater  discomfort).  Therefore,  it  is
imperative  that  TAOP  is  determined  accurately  and  precisely.  As  a  result,  the  current
applications of BFR exercise are somewhat limited to research and clinical settings whereby
these procedures  can be performed accurately  and reliably,  although data  are  limited  in this
regard. For example, among a small sample of males (n=13), pulsed wave Doppler ultrasound
exhibited moderate/high reliability (intraclass correlation coefficient [ICC] = 0.796), while the
coefficient of variation (COV) was 5.6% (Bezerra et al., 2017). There were, however, no relative
measures  of  reliability  reported  (e.g.,  standard  error  of  the  measurement  [SEM] or  minimal
difference [MD]) which limits the application of these findings [44]. 

An  exciting  strategy  to  circumvent  the  determination  of  TAOP,  is  the  algorithm-based
determination  of  TAOP.  Specifically,  several  commercially  available  devices  (e.g,  SujiBFR,
Defli,  Smartcuffs)  independently  estimate TAOP  using  proprietary  engineering  that  likely
leverages known variables (e.g., limb width, mean arterial  pressure) which affect TAOP. For
example,  in  a  small  sample  (n=10),  one  study  [45] examined  test-retest  reliability  of  an
algorithm-based determination (Delfi PTS, Delfi Medical,  Vancouver, BC, Canada) of TAOP
and reported high reliability (ICC > 0.953; COV = 2.97%), but the validity of this device was not
examined. Algorithm-based devices such as the one previously examined and others (e.g., Suji,
SmartCuffs)  may  exhibit  greater  utility  than  current  research-based  practices  for  the
determination of TAOP which requires ultrasound and trained personnel, but their algorithms
should  be  critically  examined  to  prevent  potential  adverse  effects.  Specifically,  researchers
[42,46,47]  have done substantial and meaningful work identifying predictors, equations, and/or
algorithms which can estimate TAOP, but these methods are not without error. Thus, there is an
inherent need to determine if commercially available BFR devices implementing algorithms to
determine  TAOP  are  clinically  sound  (i.e.,  reliability  and  validity).  Furthermore,  there  is
insufficient data examining the reliability of TAOP using pulsed wave Doppler (the criterion
method).  Regardless,  commercially  available  devices  (e.g.,  SujiBFR,  Delfi,  Smartcuffs)  may
provide viable  alternatives  to the criterion  determination  of  TAOP ultimately  facilitating  the
larger implementation of BFR.

Novel Serological Neoepitopes as Biomarkers of Skeletal Muscle Structure and Function

Biomarkers are defined as measurable indicators of biological processes or responses to an 
exposure or intervention [48] . They represent an indispensable tool in human biology that 
allows researchers to map the complex physiological pathways that underpin healthy and altered 
physiological function [49] . The use of serological biomarkers has the benefit of being relatively
non-invasive and easy to perform [50,51], which has led to the widespread development of 
assays for various biological markers. In this regard, neoepitopes have emerged as a class of 
serological peptide biomarkers with diagnostic and prognostic potential that may also have utility
as minimally invasive indicators of health status, physiological response and/or disease 
susceptibility (Fig 4). 

In skeletal muscle, neoepitopes may be exposed following post-translational modifications 
(PTMs) to specific muscle proteins [52] . Proteolytic cleavage is a particularly interesting PTM 
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as it creates peptide fragments and the potential for novel neoepitopes on the carboxy- or 
aminoterminal ends of cleaved peptides [53,54]. Peptide fragments being smaller than their intact
parent proteins can enter the circulation more readily [55] where antibodies can be raised against 
specific neoepitopes exposed on these fragments. Since serological neoepitope biomarkers 
consist of a unique combination of parent proteins and PTMs [56], they are thought to be 
reflective of tissue specific physiological or pathological remodeling processes rather than 
overall muscle size or quality and may therefore serve as ideal biomarkers for early the detection 
of various myopathies [57,58] . It is also thought that serological neoepitope biomarkers have the
potential to provide insight into net changes in protein metabolism, which is currently limited to 
operationally complex and invasive stable isotope techniques [58].

Much of the research examining neoepitopes in skeletal muscle has focused on temporal changes
to extracellular matrix (ECM) collagens following various interventions. Nedergaard et al., 2013 
examined changes in collagen type VI fragment degraded by matrix metalloproteinases 2 and 9 
(C6M) and type VI collagen N-terminal globular domain epitope (IC6) among young and old 
men at baseline after 2-weeks of unilateral immobilization and 4-weeks of remobilization with 3 
x weekly resistance training, respectively [59]. They found significant correlations between IC6 
and muscle mass at baseline, and between C6M and the change in muscle mass from 2-weeks to 
4-weeks of remobilization in young but not old men [59]. The same group also reported 
significant associations between lean body mass, IC6, collagen type III synthesis (Pro-C3) and 
the IC6/C6M ratio among matched controls in the 25B cohort of the Danish Head and Neck 
cancer group (DAHANCA) trial [60]. In another study, Sun et al., 2015 examined the temporal 
profile of neoepitope peptides Pro-C3, C-terminus α3(VI) chain (Pro-C6) and C6M following 8-
weeks immobilization and remobilization. They reported significant associations between Pro-
C3, C6M and lean body mass at baseline, a significant upregulation of both Pro-C3 and Pro-C6 
following immobilization and remobilization indicative of muscle remodeling, and an inverse 
relationship between Pro-C6 and changes in muscle mass [61]. Consistent with this, work by 
Nielsen et al. 2013 also indicates that higher levels of Pro-C3 predict greater muscle mass in 
healthy individuals [62]. More recently, Reule et al., 2016 found that the ratio of type II collagen 
collagenase cleavage neoepitope (C2C) to C propeptide of type II procollagen (CP2) was 
responsive to leucine-rich amino acid supplementation administered in conjunction with 12-
weeks of combined aerobic strength and balance training [63]. They report a significantly greater
decrease in the acute phase (0-3 hours) C2C/CP2 post-training response to a downhill walking 
stress test when compared to the placebo group, indicating a lower disturbance in joint 
homeostasis that coincided with a significant attenuation of acute phase quadricep MVC strength
loss [63]. Several other serological biomarkers, including C-terminal agrin fragment (CAF) and 
matrix metalloproteinase-2 degraded titin fragment (titin-MMP2) also appear to be strong 
discriminators of normal versus aberrant skeletal muscle outcomes including muscle 
wasting/atrophy and protein turnover [61,64].

The large dynamic range and complexity of both the proteome and various PTMs [65] represents
a significant challenge for the identification of new muscle specific neoepitope biomarkers and 
targeting reagents. Nevertheless, while this area of research is currently in its infancy, the limited
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current literature indicates that serological neoepitope biomarkers of cleaved circulating peptide 
fragments are promising candidates for assessing skeletal muscle structure and function. 

Skeletal Muscle Quality

Studies have increasingly shown that there is a disassociation between skeletal muscle strength 
and mass [66,67]. For example, the National Institutes on Aging’s longitudinal Healthy, Aging, 
and Body Composition study showed that adults ≥ 70 years of age lost ~3× more muscle strength
than mass on an annual basis [66]. Even more compelling, older adults that gained muscle mass 
still lost muscle strength [68]. In addition, immobilization and bed rest studies have shown that 
muscle strength and mass show divergent timelines, with strength rapidly diminishing before 
detectable declines in muscle mass [69–71]. These concepts have given rise to the concept of 
muscle quality and its methods of assessment [72]. 

The measurement of echo intensity has emerged as a potential tool for studying skeletal muscle 
quality and estimating intramuscular fat content, providing insights that may be unique from 
measures of muscle size [73]. Echo intensity is a quantitative measure of brightness in ultrasound
images, reflecting the echogenicity of tissues (Fig 5). In skeletal muscle, echo intensity is 
influenced by physiological factors such as muscle fiber arrangement [74], connective tissue 
content [75], and the presence of intramuscular fat [76]. Higher echo intensity values are 
associated with muscle pathologies like atrophy, fibrosis, and fatty infiltration [77], while lower 
values are observed in young, healthy muscles. MRI studies suggest that echo intensity’s ability 
to estimate intramuscular fat content appears promising[77,78]. Echo intensity is associated with 
several functional outcomes [79,80] and it appears to be sensitive in detecting differences 
between age groups [81]. Additional research is needed to understand why large differences in 
echo intensity are often seen when comparing groups with distinct characteristics like age or 
training status, whereas smaller changes are detected in response to exercise or rehabilitation 
interventions [82]. One potential explanation is that intrinsic physiological factors like muscle 
fiber type distribution, connective tissue content, and intramuscular fat infiltration change slowly
over time. Group differences may represent the cumulative result of prolonged exposure to 
factors like aging. In contrast, short-term interventions elicit more modest echo intensity 
changes, as muscle structural characteristics do not radically transform within days or weeks. 
Longer training studies are needed to determine if more marked echo intensity changes can be 
induced over time with sustained exposure to stimuli like exercise. It is also important to 
recognize that echo intensity is affected by methodological factors, such as probe tilt [83] and 
participant positioning [84]. Recent evidence suggests that researchers new to echo intensity 
analyses provide reliable measurements [85] and small adjustments in image depth to 
accommodate muscles of different sizes are acceptable [86].

Most published echo intensity studies have relied on ImageJ software (National Institutes of 
Health, Bethesda, MA, USA), in which investigators manually analyze a muscle’s region of 
interest. While these approaches are well established, they can be time consuming and 
subjective, making it difficult to conduct large-scale analyses quickly. However, emerging 
technologies are likely to streamline the measurement process, reduce subjectivity, and enhance 
the accuracy of echo intensity analysis. Automated or semi-automated region of interest selection
algorithms have recently been introduced to target specific muscle regions [87,88]. In the future, 
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computerized analysis of ultrasound images will enable the precise quantification of echo 
intensity values, ensuring consistent and reproducible evaluations. In addition, small probes and 
wireless technology that integrate with laptops, tablets, and smartphones phones will likely make
the analysis of echo intensity much more accessible and rapid.

Overall, the measurement of echo intensity has emerged as an innovative approach for studying 
skeletal muscle quality and estimating intramuscular fat content. Importantly, these 
measurements can be done with ultrasound devices that are portable and less expensive than 
MRI, and minimal training is required. These measurements are particularly useful when 
complementing measures of muscle size (e.g., cross-sectional area or volume) and physical 
function. For more detailed information, the reader is encouraged to review two recent echo 
intensity reviews by Stock and Thompson [73] and Wong et al [82]. 

Practical Body Composition & Novel Use of Bioelectrical Impedance Analysis (BIA) 

Laboratory-based methods of body composition estimation potentially offer an error reduction of
approximately 50% in body fat estimation compared to field-based methods. However, these 
improvements are partially attributable to the ability to control numerous physiological 
assumptions [89]. The inherent error of body composition measurement is further complicated 
using either population-specific or generalized prediction equations that likely compound the 
error in some individuals or groups. For athletes, the need for dietary restriction, adequate 
hydration, and standardized physical activity further exacerbates the issue.

Whole body estimation of body fat percentage is limited with its greatest utility in large 
population/epidemiological evaluations or public health settings. Site- or region-specific values 
to evaluate tissue distribution may be more useful for practitioners and athletes. Dual-energy X-
ray absorptiometry enables potential evaluation of total body and site-specific fat mass, lean soft 
tissue mass, and bone mineral density [89] . However, these devices are expensive, vary across 
manufacturers, require low-dose radiation exposure, all of which may be prohibitive in many 
practical settings.

A viable alternative is the direct evaluation of skinfold thickness either at a specific site or as a 
sum of several sites throughout the body, instead of using prediction equations to determine body
density. While standardized protocols and trained evaluators are required, this method seems 
least affected by the inherent variation in the typical restrictions recommended for body 
composition assessments [90]. Although less commonly reported in the literature, recent 
attempts have been made to provide normative data for the summation of skinfold measurements
[90,91].

As skinfold thickness does not directly assess skeletal muscle, it is recommended to evaluate this
information alongside anthropometric data such as regional circumferences (limb, hip/waist, etc.)
and/or body mass [92,93]. Fig 6 illustrates how changes in skinfold thickness can be translated to
body fat, while circumferences or body mass can serve as a proxy for muscle mass and the 
interaction between these values.
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This combined information can also be used to calculate corrected girth values (which account 
for an adjustment of skinfold thickness to determine musculoskeletal cross-sectional area) or lean
mass index (a log-based adjustment for body mass and summed skinfolds) [94] . Notably, 
DeFreitas et al. [95] demonstrated that, despite underestimating muscle cross-sectional area 
compared to peripheral quantitative computed tomography (pQCT), both a corrected girth 
equation [96] and a regression equation [97] adequately tracked changes in this value during an 
eight-week resistance training program. A recent review by Duarte et al. [98]  discusses 
numerous validated anthropometric equations for limb-specific muscle mass estimation. 

BIA offers a unique approach for body composition assessment by estimating the fat-free body, 
generally assumed to be ~73% hydrated, rather than fat mass [89]. However, the basic 
assumptions of body shape (i.e., the segments of the body are perfect cylinders), as well as the 
use of prediction equations (either through published work or developed by the device 
manufacturer), introduce similar problems to other measurement methods. Therefore, it is 
becoming increasingly common to directly evaluate the raw bioelectric parameters [resistance 
(R), reactance (Xc), and phase angle (PhA)] recorded by these devices (typically at 50 kHz). 

From a practical perspective, R may represent cellular hydration, Xc may represent cell 
membrane integrity, and PhA is calculated as the arctangent ratio of Xc to R. The latter variable 
may be considered representative of intra- and extra-cellular fluid (or ICW/ECW ratio) and/or 
cell body mass, which has been suggested as an indicator of cellular health. These values can be 
considered separately or plotted together through bioelectrical impedance vector analysis 
(BIVA). The resultant vectors have been shown to differentiate between competitive levels and 
types of athletes [99]. Interestingly, Kim et al. [100] demonstrated the discriminative potential of
BIVA by distinguishing between female fashion models, dancers, and gymnasts in a manner 
similar to somtatotyping with increasing mesomorphy (i.e., muscularity) and decreasing 
ectomorphy (i.e., linearity) across these groups. Furthermore, a recent systematic review reported
that PhA increases with age and is higher in athletes than controls as well as in males than 
females [101]. 

The evaluation of raw bioelectrical data can also be applied regionally, a process known as 
electrical impedance myography or localized BIA. Initially developed to examine diseased tissue
and subsequently, sarcopenic individuals, its application in athletic populations has been 
established, focusing on adaptations to exercise and return-to-play situations following injury
[102].

In adopting an “innovation through simplification” stance towards body composition assessment,
this section of the paper underscores the importance of understanding and contextually applying 
the available methodologies. For a comprehensive overview of available methods, and a practical
decision-making tree readers are encouraged to consult Kasper et al. [90]. Further, a detailed 
discussion on related topics is provided by Lukaski & Raymond-Pope [99]. 

Skeletal Muscle Pain

Pain is a sensory and emotional experience impacted by the interaction of biological and 
psychosocial factors [103]. One biologic factor that impacts the perception of pain is skeletal 

9

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

Th
is

 a
rt

ic
le

 is
 p

ro
te

ct
ed

 b
y 

co
py

rig
ht

. A
ll 

rig
ht

s 
re

se
rv

ed
.

Ac
ce

pt
ed

 M
an

us
cr

ip
t

D
ow

nl
oa

de
d 

by
: H

ar
rie

t F
. G

in
sb

ur
g 

H
ea

lth
 S

ci
en

ce
s 

Li
br

ar
y.

 C
op

yr
ig

ht
ed

 m
at

er
ia

l.



muscle health. In a state of inflammation or musculoskeletal pathology, myofascial trigger points
may develop within the tissue that contribute to a myofascial pain syndrome [104]. Myofascial 
pain is prevalent with 30% of individuals seeking care for pain at a primary care office meeting 
the criteria for myofascial pain. While the definition of a trigger point can vary, there is general 
agreement among clinicians and scientists that myofascial pain is a separate diagnosis from 
fibromyalgia [105] and that trigger points contribute to myofascial pain syndrome [106].

Myofascial trigger points are localized, taut bands of skeletal muscle tissue (Fig 7). A recent 
Delphi survey established that two of the following three criteria should be present to diagnose a 
myofascial trigger point: taut band, hypersensitive spot, and referred pain [107].  During direct 
compression, a ‘jump response’ may be elicited with or without referred pain [106]. Myofascial 
trigger points are often both painful to palpation and can be a generator of pain. While the 
mechanisms underlying trigger points are multifactorial, repetitive eccentric contractions or 
overuse may result in an abnormal increase in acetylcholine at the neuromuscular junction of the 
muscle. Abnormal acetylcholine release may generate a sustained muscle contraction, causing 
localized ischemia and a palpable taut band [108]. Although myofascial pain was traditionally 
thought to only involve peripheral changes, muscle sensitization is also impacted by central 
nervous system sensitization [109]. 

A diagnosis of myofascial pain syndrome relies on the palpation of myofascial trigger points. 
However, a limitation in the clinical assessment is varied inter-rater reliability in myofascial 
trigger point identification [110]. New approaches have been proposed to improve the 
identification of trigger points, including: pressure algometry and imaging. Pressure Pain 
Threshold (PPT) is a cost-effective and clinically feasible technique that may be employed to 
assess trigger points. During PPT, a device with a small rubber tip (algometer) is applied over the
muscle with an ascending intensity until the individual reports that the sensation changed from 
“comfortable pressure to slightly unpleasant pain” (pain threshold). The benefit of this 
assessment is the stimulus is quantifiable and, therefore, the threshold for pain perception in 
response to pressure is measured. PPT is significantly lower over trigger points and increases in 
areas without trigger points [111]. Excellent intra and inter-rater reliability is demonstrated for 
PPT application over trigger points [112].

Recent advances have also allowed for imaging of trigger points [113]. Imaging methods, 
including ultrasound, magnetic resonance imaging, and infrared thermography have been 
developed as objective measures to potentially address the limitations with reliability. Imaging 
allows for objective characterization of the tissue consistent with the definition of a trigger point.
B-mode ultrasound imaging indicates trigger points present as spherical, hypoechoic regions
[56]. Ultrasound elastography indicates decreased vibration amplitudes within the region, 
indicative of localized stiffness of the muscle [114] at the site of the trigger point. Blood flow to 
myofascial trigger points is also distinct from healthy tissue [114]. Magnetic resonance imaging 
has been used to examine trigger points; however, the evidence remains unclear on the benefit of
this imaging modality [115] for this purpose. Trigger points are important contributors to 
myofascial pain and relevant to clinical treatment of patients with myofascial pain. Innovations 
in standardizing the definition of trigger points, along with advances in the imaging of muscle, 
may help to make this phenomenon more objective. 
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Summary 

Accurate and precise assessment of skeletal muscle health is imperative for diagnosis of disease 
and optimization of exercise and rehabilitation interventions. Our review has highlighted several 
viable, novel techniques with potential to advance these aims. Although not comprehensive, we 
have focused on select emerging approaches based on their promise for impactful discoveries 
and feasible implementation. Rapid technological innovations and subsequent adoption seem 
poised to accelerate and expand prior methods. Despite progress, outstanding questions remain 
regarding individual variation in exercise responsiveness, organ crosstalk, biomarker 
development, and monitoring and enhancing athletic performance. It is our hope that continued 
technical advances in assessing skeletal muscle health will provide insights into these critical 
topics in exercise and rehabilitation science.
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 Figure Legends

Figure 1. Dynamic imaging (B-mode) of lateral abdominal wall musculature using an elastic belt to keep 
linear transducer fixed to the abdomen throughout movement. Created with BioRender.com.

Figure 2. Muscle belly displacement versus time the phases of contraction elicited by TMG with key 
parameters comprise displacement (Dm), contraction time (Tc), delay time (Td), contraction velocity (Vc)
(Vc=[90%Dm-10%Dm/Tc]), sustain time (Ts), and half-relaxation time (Tr). (Top). An example of 
(TMG) placement for the lumbar erector spinae (bottom).

Figure 3. Illustrates the gold standard for the determination of TAOP which requires at least one 
technician. More recently, innovative approaches have been developed which leverage proprietary 
algorithms to determine TAOP and do not require a trained technician(s). These devices can often be 
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controlled wirelessly from a mobile app and detached from the air source facilitating, greater utility in 
exercise and rehabilitation settings. Created with BioRender.com.

Figure 4. Detection of serological peptide fragments. 1. Proteolytic cleavage of collagen protein 2. 
Peptide fragments enter blood stream, 3. Blood sample obtained, 4. Antibodies raised against neoepitope 
markers, 5. Quantification vis assay e.g., flow cytometry. Created with BioRender.com.

Figure 5. Example B-mode ultrasound images and echo intensity (EI) analyses of the vastus lateralis for 
an older (top) and younger (bottom) male. Note the vastly different pixel distributions for the two images.
These images are a fairly accurate depiction of published findings, as many studies have reported higher 
echo intensity among older adults.

Figure 6. Changes in site-specific skinfold thickness and circumference (or body mass) as potential 
proxies of body fat and muscle mass, respectively.  The examples provided indicate trends toward and 
away from A) muscle growth/hypertrophy, B) adiposity, C) muscle growth/hypertrophy with leanness, 
and D) muscle growth/hypertrophy with adiposity. Created with BioRender.com.

Figure 7. Overview of Methods to Identify a Myofascial Trigger Point. Myofascial trigger points may be 
identified with palpation or novel imaging techniques.  Although not comprehensive, novel imaging 
techniques may include ultrasound or magnetic resonance imaging (MRI). Created with BioRender.com.
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